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(57) ABSTRACT

A computing system method, program and hardware for cor-
relation of millicode predictions with specific millicode rou-
tines receives architected millicode and stores the millicode
in internal memory. The computer systems processors’ pipe-
line is employed to predict and select a branch target buffer’s
(BTB) target address. A computer millicode control enabling
an operating system (O/S) multi-task control between mul-
tiple user programs able to use millicode routines and ensur-
ing that the programs do not interfere with each other, by use
of a branch target buffer (BTB) prediction of a branch target
to ensure that a millicode routine does not fetch outside of
said millicode routine while performing operations as
required by said millicode routing, said branch target buffer
prediction employing a correlation mechanism for predicting
millicoded branch millicode entry and millicode end instruc-
tions and for correlating millicode end predictions with spe-
cific millicode routines.

20 Claims, 5 Drawing Sheets
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1
METHOD AND APPARATUS TO LIMIT
MILLICODE ROUTINE END BRANCH
PREDICTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a method and system apparatus ,
and in particular to a control to limit millicode routing end
branch prediction.

2. Description of Background

Prior work includes applications assigned to IBM which
include:

U.S. Published Patent Application US20090217002A1:
SYSTEM AND METHOD FOR PROVIDING ASYN-
CHRONOUS DYNAMIC MILLICODE ENTRY PREDIC-
TION, filed by James J. Bonanno, et al. on Feb. 21, 2008,
which relates to: a system and method for asynchronous
dynamic millicode entry prediction in a processor are pro-
vided. The system includes a branch target buffer (BTB) to
hold branch information. The branch information includes: a
branch type indicating that the branch represents a millicode
entry (mcentry) instruction targeting a millicode subroutine,
and an instruction length code (ILC) associated with the
mcentry instruction. The system also includes search logic to
perform a method. The method includes locating a branch
address in the BTB for the mcentry instruction targeting the
millicode subroutine, and determining a return address to
return from the millicode subroutine as a function of the
instruction address of the mcentry instruction and the ILC.
The system further includes instruction fetch controls to fetch
instructions of the millicode subroutine asynchronous to the
search logic. The search logic may also operate asynchronous
with respect to an instruction decode unit; and

U.S. Published Patent Application US20090217016A1:
SYSTEM AND METHOD FOR SEARCH AREA CON-
FINED BRANCH PREDICTION, filed by James J. Bonanno
etal., Feb. 22, 2008, which relates to a system and method for
performing search area confined branch prediction in a pro-
cessor. The system includes a branch target butfer (BTB) to
hold branch information for branch prediction, where the
branch information includes a branch address. The system
also includes search logic for searching the BTB to locate a
branch address. The system additionally includes throttle
logic to stop searching the BTB in response to reaching a
predefined search limit.

SUMMARY OF THE INVENTION

The current invention implements the prior work and
addresses the problem within millicode that still exists as
operating system (O/S) multi-task control between multiple
user programs able to use millicode routines must ensure that
the programs do not interfere with each other, i.e. that there
can be subroutine calls and this can yield a mcend prediction
that is desired in some cases but can not be supported in other
cases. Our solution in this exemplary embodiment for this
problem is to correlate mcend predictions with specific mil-
licode routines. Thus we limit millicode routine end branch
prediction to ensure a millicode routine does not fetch beyond
millicode end outside of its current routine.

Our computer millicode control enables an operating sys-
tem (O/S) to have multi-task control between multiple user
programs which are able to use millicode routines and
ensures that the programs do not interfere with each other, by
use of a branch target buffer (BTB) prediction of a branch
target to ensure that a millicode routine does not fetch beyond
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millicode end outside of said millicode routine while per-
forming operations as required by said millicode routing, said
branch target buffer prediction employing a correlation
mechanism for predicting millicoded branch millicode entry
and millicode end instructions and for correlating millicode
end predictions with specific millicode routines.

System and computer program products corresponding to
the above-summarized methods are also described and
claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and to the drawings.

As a result of the summarized invention, technically we
have achieved a solution which provides a method for fault
injection verification as a computer process without manual
intervention.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 illustrates the high level of the computing system
and its hardware for correlation of millicode predictions with
specific millicode routines.

FIG. 2 illustrates branch prediction and how it interfaces
with the computing system’s processor pipeline.

FIG. 3 shows the predicted branch’s target address data-
flow.

FIG. 4 illustrates a branch target buffer’s (BTB) target
address selection.

FIG. 5 illustrates finding a predicted branch.

The detailed description explains the preferred embodi-
ments of the invention, together with advantages and features,
by way of example with reference to the drawings.

DETAILED DESCRIPTION OF THE INVENTION

Turning now to the drawings in greater detail, it will be
appreciated that in FIG. 1 there is illustrated the hardware
which provides for correlation of millicode predictions with
specific millicode routines.

FIG. 1 shows the high level of the computing system and its
hardware . The computer itself is denoted by 130 for corre-
lation of millicode predictions with specific millicode rou-
tines.

Within this computing system (130) there is an input/out-
put controller (140) which communicates with the storage
devices (121), drives and interfaces (122) for reading user
data medium (112) which contains code and data (111). The
computing system can also acquire content from a network
(180) via the network interface (150). This content which is
acquired directly from and code disk or via the network
interface is stored in local memory (160) and the milicode is
so transferred, usually in the form of occasional updates, for
use of the computing system during operation. Beyond user
data, there is significant code required to make the computer
and user program run. There is the internal millicode (161).
The millicode is part of the architected instructions. A com-
plex instruction is defined as a single instruction to the pro-
grammer; however, there is internally licensed code which
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breaks one complex instruction into many less complex
instructions. The purpose of millicode is two fold. Having full
control over the hardware, it contains algorithms that have
been designed and tested specifically for the machine. These
algorithms with the control they have over the system could
crash a system if not done correctly. It is for this reason that a
complex instruction is provided to the user and the “delicates”
are handled within the tested millicode routine. It is with this
level of control that derives the second reason. This control
allows certain operations to be performed faster than what a
programmer on the system can accomplish because of the
control difference the IBM millicode (know as licensed inter-
nal millicode or LIC) has over an end user. The operating
system (O/S) (162) specifically relies on millicode internal
control as the O/S multi-task control between multiple user
programs (163) and must ensure that the programs do not
interfere with each other. These levels of software (162, 163)
run on the processor (170). When running a program, there
are many decision points/branches that are encountered in the
program. On average, such a decision is to be made every 4 to
5 instructions. If the program had to wait for each branch to be
resolved prior to making future progress the computing sys-
tems would run slow as there would be minimal opportunity
to overlap the processing of multiple instructions. To allow
the overlapping of instructions, branches are predicted (171)
as to what their outcome will be such that the processor does
not stall waiting for the outcome of a branch.

In a “complex™ architecture there can be the complex
instructions, which perform a series of less complex opera-
tions under LIC to provide one complex instruction available
for a programmer to use. In IBM’s z/Architecture® this is
known as millicode. The millicode instructions under LIC
have ways to alter the state of the machine which are not
present to the programmer because improper updates of such
facilities can yield data corruption and/or machine hangs.

When executing a millicode routine, one object is to do the
routine as quickly as possible. The millicode routine can be
thought of as a sub-routine/function. The millicoded routine
is entered via a “millicode entry” (mcentry) instruction and
exited by a “millicode end” (mcend) instruction. These mcen-
try and mcend instructions are processed as branch instruc-
tions and are carefully treated to allow these entry (mcentry)
and exit (mcend) instructions to be branch predicted.

FIG. 2 shows a high level view of branch prediction and
how it interfaces with a processor pipeline. Branch prediction
may consist of multiple parts. A branch history table (BHT) is
used to predict the direction (taken vs not taken) of a branch
and a branch target buffer (BTB) predicts the target of a
branch based on a given instruction address (IA) associated
with that branch. The BTB holds branch information for
branch prediction, and the branch information includes a
branch address. The system also includes search logic for
searching the BTB to locate a branch address. There may be
other prediction mechanisms such as a pattern history table
(PHT) to assist the BHT and a changing target buffer (CTB)
to assist the BTB.

There are 5 parts defined for branch prediction in the BTB
(211) which predicts the address, target and other bits about a
branch. Other items include but are not limited to the branch
being in millicode and the branch being for the millicode
return (mcend) instruction. This is also defined in the anti-
alising bit (403) and the millicode return branch instruction
denotation (404) discussed below. The direction (taken & not
taken) prediction as a function of the branch address is pre-
dicted by the BHT (212). To handle branches which exhibit
direction outcome as a function of what path was taken to get
to the branch, the PHT (Pattern History Table-213) is present.
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Should a branch have more than one target, the multiple
targets can be handled by one of two items, CTB (Changing
Target Buffer-214) and the return address (215). In our exem-
plary computing system, the return address is only used to
handle the return address for a millicode routine as per a
mcend (which would be termed a call-return stack in another
micro-architecture implementation). The structures are
accessed in parallel as shown in FIG. 2; however, one could
design the structures to be accessed in a non-parallel way as to
decrease performance in the trade-off of reducing power also.
Upon getting a prediction out of the branch prediction (detec-
tion by 220), that content is used for two purposes. One
purpose is to re-index the branch prediction logic (220
-->201) to search for the next branch. Also, the branch pre-
diction is sent to the I-fetch logic. Should the branch have
been predicted taken, then the I-fetch will start fetching down
the predicted target address path.

I-fetching (instruction fetch unit 231) fetches from the L1
I-cache (232). While not specifically detailed in FIG. 2, if a
miss happens in the L1 I cache, then a fetch is made from a
level of cache storage further away from the processor. This
higher level of storage can either be another level of cache or
main memory. Upon acquiring the instructions being fetched
for, they are sent to the instruction decode unit (IDU 240) for
decode. The IDU will send the instructions to the Issue queue
(250) which determines when the instructions can be sent to
the load store unit (LSU 261) or fixed point unit (FXU 270)
for performing the action defined by the instruction. Depend-
ing on the machine design, instructions can either be issued
in-order or out-of-order. If the instruction is a load/store, the
instruction is sent to the LSU (261) upon which the LSU will
access the D-cache (262) with respect to memory content. It
may also access locally architected registers as it forms/ac-
quires the address for which it is to fetch for. The FXU
handles operations on register manipulation. The results from
both the LSU (261) and FXU (270) are sent to the GCT
(Global Completion Table-290). The GCT tracks when
instructions are completed and can be architecturally check-
pointed. Upon a branch wrong resolution, the knowledge of a
restart must be passed along to the branch prediction logic
(201) so as to update the branch prediction table states. It may
update anywhere from zero to all of the tables (211, 212, 213,
214, 215).

The basis for prediction in our exemplary embodiment is
built around the foundation of a BHT and BTB. FIG. 3 shows
the predicted branch’s target address dataflow. This FIG. 3
shows the BTB (310) containing 4 sets of data (311, 312, 313,
314) upon which a target can be predicted from any of the 4
BTB sets. Each set has the potential of stating the target
address of the branch as that of the address contained in the
BTB or that which is stored in the millicode return address
storage container (330). Upon determining which address is
to be used per BTB set with respect to predicting a branch
target, the BTB (310) must have its output muxed (350) down
to a single branch chosen as the next branch in program order.
The selection of BTB target (311, 312, 313, 314) vs millicode
return address (330) is shown in FIG. 4.

FIG. 4 illustrates a branch target buffer’s (BTB) target
address selection steps. Per a given BTB entry (311, 312,313,
314) multiple blocks of data are stored with each entry. In
FIG. 4, the block entry 400 references the block of addresses
(401, 402, 403, 404). The BTB entry (400) contains at mini-
mal a branch tag address (401), a predicted target address for
the given branch (402) and knowledge if the branch is in
millicode (403). If millicode is kept to a region that is fully
covered by the branch tag address (401), then having a mil-
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licode bit (403) prevents aliasing from occurring such that
any branch predicted in millicode actually has a branch at that
address.

Here we observe the effect of aliasing. Unlike the Icache/
Dcache, a full tag is not used on the BTB for doing so only
yields a delta on performance. The BTB for user code is for
performance and making a bad prediction will only alter
performance. In a trade-off of area, there is a balance on how
many tag bits exist versus the total number of BTB entries.
The more tag bits, the fewer total BTB entries. Certain code
such as millicode needs to have more control over branch
prediction and by including a millicode bit, the prevention of
aliasing as defined for millicode is a small subset of space
which can be covered by the limited BTB tagging.

Note that in FIG. 4, also included in the BTB entry is the
millicode return branch instruction denotation (404). While
these are the required fields of BTB in this description, to one
skilled in the art, there may be other content also stored in the
BTB. For that matter, there are many other bits in the BTB on
the System z microprocessor (past, present, and future).

The creation of the millicode return address (430) Milli-
code can be thought of as a function. Upon a complex instruc-
tion being called by a user program, the hardware branches
somewhere in secure memory to do a number of simpler
instructions which define the millicode instruction. Upon
completion of the millicode routine, the millicode can be
thought of as branching back to the user code. A branch to the
millicode routine and returning back to the user code can be
thought of as a branch to a function/sub-routine and then a
return back. Upon a branch into the millicode routine, the
sequential address to that of the millicoded routine entry
instruction is saved off in the millicode return address (430).
This is the target of the branch that returns from millicode to
user code. This yields better performance, for that millicode
routine can be called from many different places in user code
and hence it does not have a single point of return. Since the
millicode return address is saved oft (430), the target field
(402) ofa BTB entry (400,311, 312, 313, 314) is no longer in
use.

Based on the operation of the millicode routine, there are
certain routines which must prevent the millicode return from
being predicted. For example, there are certain routines
within an O/S which purge address translations from the TLB
and/or part of the Icache/Dcache (232, 262). During such
purging actions, for example, the cache must not take a miss
while in the middle of redefining its state as the miss would go
after modifying the cache state which is currently in the
middle of being modified by another [purge| process. Now
within millicode, there can be two different millicode instruc-
tions/functions which have a common sub-routine. One mil-
licode function may allow for the mcend to be predicted while
the other routine can not allow the millicode routine’s mcend
to be predicted. To handle this, since there is one unique
mcend as per instruction address, the address of the millicode
routine itself is stored in the target address field (402) of the
BTB entry. Once again, the amount of millicode space is
limited/finite and as such will fit in the target field.

Upon determining if a search yields a branch hit, not only
is the tag address (401) for the BTB entry (400) compared
(411) to the search address (410), but if that particular BTB
entry (400) is also a mcend (404), then the millicode routine
address (420) must also be compared (422) to the contents
stored in the BTB entries (400) target address field (402) as
the target address field does not contain the target of the
branch but rather the millicode routine that was called by the
program. In order for there to be a branch match, an equality
must be recognized on the tag compare (411) and either the
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branch must not be a mcend (404) or the target field (402)
must match (422) the millicode routine address (420). If both
of'the conditions are satisfied (450), then a branch is found in
the given BTB entry (400).

It will be seen that a BTB works by storing a partial branch
address and target address in a table A partial branch address
tag is only required for the BTB because being incorrect is not
a data integrity issue but rather a performance trade-off. With
a finite amount of area on the chip for a BTB (to provide
enough silicon area to optimize overall performance) a trade-
off has to be made between the number of branch address tag
bits and total number of branches which are stored in the
BTB.

The IBM System z10™ Enterprise Class, is the current
commercial machine which offers a continuation of IBM
scalable mainframe servers which can implement the inven-
tions of the referenced US Published Patent Application
entitled: SYSTEM AND METHOD FOR PROVIDING
ASYNCHRONOUS DYNAMIC MILLICODE ENTRY
PREDICTION, filed by James J. Bonanno, et al. on Feb. 21,
2008 and the referenced U.S. Published Patent Application
entitled: SYSTEM AND METHOD FOR SEARCH AREA
CONFINED BRANCH PREDICTION, filed by James J.
Bonanno et al., Feb. 22, 2008 are included in our exemplary
embodiment of the computer system 130 as well as the
present advance when the new architected millicode control
is implemented. Both of these published applications are
referenced and incorporated in full herein by this reference.
Based on the newer machines use of a table which is 4-way set
associative and has an index which is offset by 32 bytes;
therefore, for each address that is used to index the BTB, 32
bytes of content can be searched to determine if there a stored
branch address in one of the 4-sets. Upon a branch instruction
address match, the branch is predicted and the instruction
fetch (I-fetch) logic fetches down the target path of the
branch. This can all be done prior to execution, decode, and
“I-fetch to I-cache” for the given branch instruction.

While in millicode, updates to the machine can include
updating the TLB (translation lookaside buffer). Upon doing
such updates, fetches must be controlled as to not allow
I-cache misses which require translation Millicode can con-
trol the routine itself by fetching all cache lines required to
this process and then verifying that all fetches have completed
successfully Millicode can not control the program outside of
the millicode routine and hence millicode must prevent the
mcend from yielding a fetch to outside of the millicode while
performing such operations. To prevent such mcend target
fetches, items already in place/existence include:

oA bitin the BTB to state that a given branch is a milli-
code branch. With this bit, an alias is prevented in millicode
for the millicode region is small enough to fit into the avail-
able branch address tags. Through this, the BTB can only
predict actual paths that have been executed/completed by the
millicode routine in the past.

an_A bit in the meend opcode that states a given meend
routine is allowed or not allowed to be predicted. By prevent-
ing an mcend from being predicted, it is never installed into
the BTB and thus can never be predicted by the BTB.

The problem solved with the current advance illustrated by
the Figures is that within millicode that still exists is subrou-
tine calls and this can yield a mcend prediction that is desired
in some cases but can not be supported in other cases . For
example, consider millicode routines ‘A’ & ‘B’. Each of these
routines calls subroutine ‘X’. Initially millicode routine ‘A’ is
executed and it calls subroutine ‘X’. Eventually sub-routine
‘X’ returns back to routine ‘A’ and ‘A’ eventually has a mcend
which exits the millicode routine. The mcend in routine ‘A’ is
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to be predicted for there are no data integrity issues here and
performance is to be optimized.

The problem comes with routine ‘B’ which is updating
sensitive states of the machine and must prevent mcend from
being predicted. Routine ‘B’ is entered and it also needs to use
sub-routine ‘X’. When subroutine ‘X’, from Routine ‘B’, itis
predicted. However, to go back to routine ‘A’ (instead of
routine ‘B’) since the last time it went back to “A’.

Routine ‘A’ has an mcend that is allowed to be predicted
and the mcend for routine ‘A’ is then predicted even though
the routine being processed is routine ‘B’. While routine ‘A’
results are never committed (since it will eventually get a
wrong target prediction notification on the return from rou-
tine ‘X”), routine ‘A’ has the mcend predicted which allows an
instruction fetch to proceed beyond the mcend and this may
create data integrity for routine ‘B’.

Thus FIG. 5 illustrates finding a predicted branch. A BTB
index is available for searching (501) so index the BTB (310).
Ifthere is a tag match, which includes the millicode bit (403),
a branch is found in the given BTB set (311, 312, 313, 314).
If no match was found, then continue the sequential search
through the instruction address field by performing an incre-
ment to the BTB index (512). The output of 512 couples to a
hit point (520). So a compare (502) is for a given set. Only if
all sets don’t find a hit, does the BTB index get an increment
by the value of 1. Then, start the process again (501). If there
is a tag match determine the direction (503) of the prediction.
If the branch is predicted not taken then create (513) a side
copy of the search address, of which a subset is used for the
index, to represent the address of the instruction sequentially
after the not taken branch. If the branch is taken, then it must
be determined (504) if the branch is a mcend. If the branch is
not a mecend, then the target address is that in the BTB target
field (514). If the branch is a mcend, then a compare (505)
must be and is done on the target address field (402) versus the
millicode routine address (420).

If the target address field (402) matches the millicode rou-
tine address, then the target address should be selected (515)
from the saved off millicode return address (430). If there is
not amatch then as per this set, the BTB is to increment to the
next line to continue the search (512).

Upon determining if a hit has taken place for each and
every set, there may be anywhere from O to all sets finding a
hit (520). If no hit is found, then the BTB is to search the next
line. If there is one hit, that is the hit of interest. If there are
multiple hits, then the hit of interest to use for starting the next
search is that entry which lies closest to but not prior to the
starting search address. This decision ofthe new BTB index is
defined in 520.

Thus, the solution we have invented for this problem is to
correlate mcend predictions with specific millicode routines.
In this sense, mcend predictions in routine ‘A’ can only be
predicted if the mcentry was for routine ‘A’. The same is true
for routine ‘B’. In this fashion, should routine ‘X’ have a
mcend, then this mcend would need a unique entry in the BTB
for each millicode routine that referenced the ‘X’ mcend.

While the illustrated implementation of the invention is
being shown implemented with respect to the hardware, this
invention can also be used as a way of correlating mcends to
given millicode routines.

The mcends are mapped in the Branch Target Buffer (BTB)
to a specific millicode routine by storing the mcentry opcode
in the mecend’s BTB entry.

Branch prediction predicts the direction and the target of a
branch. A Branch History Table (BHT) is used to predict that
direction (taken vs not taken) for a branch while a Branch
Target Buffer (BTB) is used to predict the target of a branch.
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Stored within the BTB besides a branch target address is a
branch address tag. The branch address tag works similar to a
cache directory except a BTB tag does not have to be 100%
precise as the BTB is a performance feature which is allowed
to be wrong. There is a trade-off on the number of tag bits
versus the number of overall entries stored within the BTB as
the BTB only has so much physical area on a core/chip that it
can occupy.

Processing millicode entry/end routines is very similar to a
call -return stack except that millicode routines can not be
nested and there is a limit to the number of millicode routines
that can be in flight in the pipeline at any time. For these
reasons, the mcend return address does not need to be stored
inthe BTB butrather a single bit needs to be stored in the BTB
which states that the particular entry in the BTB is for a
branch which is a “mcend”. On a mcentry, the sequential
instruction address can be stored in a millicode call-return
stack and hence on a mcend prediction, the target address can
be pulled from this stack.

Given this behavior, this now frees up the target address
field in the BTB which can be used for another purpose.

There is and always will be a finite number of millicode
instructions defined in the architecture for the microprocessor
and the number of millicode instructions is smaller than the
number of target bits that need to be stored in the BTB. This
allows a substitution that for every mcend , instead of storing
the target address, the target field stores the mcentry opcode
with which the mcend is associated.

Upon entering a millicode routine, the BTB acquires
knowledge and remembers which millicode routine has been
entered. Upon a mcend prediction, the mecend prediction is
only valid if the target field contains the opcode of the mcen-
try that matches with the mcentry routine that is currently
being processed. This means, mcends associated with a given
millicode routine are the only set of mcends allowed to be
predicted for a given millicode routine.

In accordance with an exemplary implementation of the
invention:

«) Branches are installed into the BTB at completion time
frame for an instruction.

«x Only one millicode routine per thread can be issued in
the processor pipeline at any one time frame.

__Other details of the invention have been stated above in
our discussion of way of correlating mcends to given milli-
code routines.

Upon issuing a millicode routine in the processor pipeline
as per the mcentry instruction , the given opcode of the mcen-
try is stored away within the pipeline and is held onto
throughout the entire execution of the given millicode rou-
tine. Upon executing the mcend instruction, it can be recol-
lected as to which millicode routine it is associated with.
When the mcend is completed, not only will the mcend be
placed into the BTB (given other constraints are met and the
mcend is not already in the BTB) with the branch address tag,
and millicode state descriptor bit , but the mcentry opcode it
is associated with will also be entered into the BTB . With the
mcend now in the BTB, it can be predicted in the future.

On future operations of a millicode routine, once again the
given opcode of the mcentry is stored away within the pipe-
line and is held onto throughout the entire execution of the
given millicode routine . When a mcend is found in the BTB
while searching for branch prediction within the millicode
routine, the mcentry opcode stored with the mcend is com-
pared to the opcode of the mcentry that was stored away upon
entry into the given millicode routine. If these two opcodes
match then the mcend is allowed to be predicted.
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Should these opcodes not match, then the given mcend
potential prediction is not valid and no prediction is made on
the mcend, with a branch address tag match, found within the
BTB.

A computer program and/or millicode which embodies a
process described herein is stored on at least one program
storage device readable by a machine, tangibly embodying at
least one program of instructions executable by the machine
to perform the capabilities of the present invention can be
provided and used to implement the invention.

The diagrams depicted herein are just examples. There
may be many variations to these diagrams or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order, or steps may be added, deleted or
modified according to the order of importance of the heuristic
steps, in order to perform the described functions. All ofthese
variations are considered a part of the claimed invention.

While the preferred embodiment to the invention has been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:
1. A computer processing system, comprising:
a computer processing system apparatus having a proces-
sor employing an operating system (O/S) multi-task
control between multiple user programs able to use mil-
licode routines and which computer processing system
is to ensure that the multiple user programs do not inter-
fere with each other, and a processor pipeline for han-
dling said millicode routines; and
a branch addressing mechanism limiting millicode routine
end branch prediction, using millicode instructions for
branch prediction which predicts a branch direction and
a branch target of a branch for instructions of said pro-
cessor pipeline, having a branch target buffer (BTB)
predicting the branch target for a millicode routine
entered via a “millicode entry” (mcentry) instruction
and exited by a “millicode end” (mcend) instruction
processed as branch instructions, and a correlation
mechanism for predicting millicoded branch mcentry
and mcend instructions and for correlating mcend pre-
dictions with specific millicode routines, wherein the
correlating comprises comparing a value of a target
address field with a millicode routine address, based on
an indication of an mcend return, the target address field
comprising an address associated with a millicode rou-
tine; and
based on the value of the target address field matching
the millicode routine address, which indicates a cor-
relation of the mcend instruction to the mcentry
instruction, branch predicting a target address of the
mcend instruction and performing fetching at the tar-
get address of the mcend instruction; and

based on the value of the target address field not match-
ing the millicode routine address, continue searching
the BTB.

2. The computer processing system according to claim 1,
wherein millicode can not control a program of the multiple
user programs outside of the millicode routine and said
branch addressing mechanism prevents mcends not associ-
ated with the millicode routine from yielding a fetch to out-
side of a current millicode routine while performing such
operations as required by said millicode routine.
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3. The computer processing system according to claim 2,
wherein said mcends are mapped in the BTB to a specific
millicode routine by storing the mcentry opcode in the
mcend’s BTB entry.

4. The computer processing system according to claim 3,
wherein branches are installed into the BTB at a completion
time frame for an instruction of said millicode routine.

5. The computer processing system according to claim 3,
wherein only one millicode routine can be issued in the pro-
cessor pipeline at any one time frame.

6. The computer processing system according to claim 5,
wherein based on entering a millicode routine with a mcentry
routine, the BTB acquires knowledge and remembers which
millicode routine has been entered in said processor pipeline,
and wherein, based on a mcend prediction, the mcend predic-
tion is only valid if the target field contains the opcode of an
mcentry that matches with the mcentry routine that is cur-
rently being processed, wherein mcends associated with a
given millicode routine are the only set of mcends allowed to
be predicted for said given millicode routine.

7. The computer processing system according to claim 6,
wherein based on entering a millicode routine with a mcentry
routine a BTB address tag bit in the BTB states that a given
branch is a millicode branch wherein, with this BTB address
tag bit, an alias is prevented in millicode as the BTB address
tagged bit branch region is small enough to fit into the avail-
able branch address tags, wherein the BTB can only predict
actual paths that have been executed/completed by the milli-
code routine in the past.

8. The computer processing system according to claim 7,
wherein based on entering a millicode routine with a mcentry
routine, an address tag opcode bit in the mcend opcode states
a given mcend routine is allowed or not allowed to be pre-
dicted, wherein when not allowed a mcend is prevented from
being predicted, it is never installed into the BTB and thus can
never be predicted by the BTB.

9. The computer processing system according to claim 8,
wherein a branch history table (BHT) is used to predict that
direction (taken vs not taken) for a branch while a branch
target buffer (BTB) is used to predict the target of a branch.

10. The computer processing system according to claim 9,
wherein stored within the BTB besides a branch target
address is said BTB address tag.

11. A method for computer processing system control
using a processor having operating system (0/S) multi-task
control between multiple user programs, comprising:

enabling said processor to use millicode routines when said

computer processing system control is to ensure that the
programs do not interfere with each other; and

employing a branch addressing mechanism, using milli-

code instructions for branch prediction which predicts a
branch direction and a branch target of a branch for
instructions of a processor pipeline, said branch address-
ing mechanism having a branch target buffer (BTB)
predicting a branch target for a millicode routine as said
millicode routine entered via a “millicode entry” (mcen-
try) instruction and exited by a “millicode end” (mcend)
instruction is processed as branch instructions, said
branch addressing mechanism including a correlation
mechanism for predicting millicoded branch mcentry
and mcend instructions and for correlating mcend pre-
dictions with specific millicode routines, wherein the
correlating comprises comparing a value of a target
address field with a millicode routine address, based on
an indication of an mcend return, the target address field
comprising an address associated with a millicode rou-
tine; and
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based on the value of the target address field matching
the millicode routine address, which indicates a cor-
relation of the mcend instruction to the mcentry
instruction, branch predicting a target address of the
mcend instruction and performing fetching at the tar-
get address of the mcend instruction; and

based on the value of the target address field not match-
ing the millicode routine address, continue searching
the BTB.

12. The method according to claim 11, wherein millicode
can not control a program of the multiple user programs
outside of the millicode routine and said branch addressing
mechanism prevents mcends not associated with the milli-
code routine from yielding a fetch to outside of a current
millicode routine while performing such operations as
required by said millicode routing.

13. The method according to claim 12, wherein said
mcends are mapped in the BTB to a specific millicode routine
by storing the mcentry opcode in the mcend’s BTB entry.

14. The method according to claim 13, wherein branches
are installed into the BTB at a completion time frame for an
instruction of said millicode routine.

15. The method according to claim 13, wherein only one
millicode routine can be issued in the processor pipeline at
any one time frame.

16. The method according to claim 15, wherein based on
entering a millicode routine with a mcentry routine, the BTB
acquires knowledge and remembers which millicode routine
has been entered in said processor pipeline, and wherein,
based on a mcend prediction, the mcend prediction is only
valid if the target field contains the opcode of an mcentry that
matches with the mcentry routine that is currently being pro-
cessed, wherein mcends associated with a given millicode
routine are the only set of mcends allowed to be predicted for
said given millicode routine.

17. The method according to claim 16, wherein based on
entering a millicode routine with a mcentry routine a BTB
address tag bit in the BTB states that a given branch is a
millicode branch wherein, with this BTB address tag bit, an
alias is prevented in millicode as the BTB address tagged bit
branch region is small enough to fit into the available branch
address tags, wherein the BTB can only predict actual paths
that have been executed/completed by the millicode routine
in the past.

18. The method according to claim 17, wherein based on
entering a millicode routine with a mcentry routine, an
address tag opcode bit in the mcend opcode states a given
mcend routine is allowed or not allowed to be predicted,
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wherein when not allowed a mcend is prevented from being
predicted, it is never installed into the BTB and thus can never
be predicted by the BTB.

19. A computer millicode control coded program, compris-
ing a plurality of instructions stored on at least one non-
transitory program storage device readable by a machine,
tangibly embodying at least one program for controlling the
execution of instructions executable by a computer to per-
form the steps of:

enabling said processor to use millicode routines when said

computer processing system control is to ensure that the
programs do not interfere with each other; and

employing a branch addressing mechanism, using milli-

code instructions for branch prediction which predicts a
branch direction and a branch target of a branch for
instructions of a processor pipeline, said branch address-
ing mechanism having a branch target buffer (BTB)
predicting a branch target for a millicode routine as said
millicode routine entered via a “millicode entry” (mcen-
try) instruction and exited by a “millicode end” (mcend)
instruction is processed as branch instructions, said
branch addressing mechanism including a correlation
mechanism for predicting millicoded branch mcentry
and mcend instructions and for correlating mcend pre-
dictions with specific millicode routines, wherein the
correlating comprises comparing a value of a target
address field with a millicode routine address, based on
an indication of an mcend return, the target address field
comprising an address associated with a millicode rou-
tine; and
based on the value of the target address field matching
the millicode routine address, which indicates a cor-
relation of the mcend instruction to the mcentry
instruction, branch predicting a target address of the
mcend instruction and performing fetching at the tar-
get address of the mcend instruction; and
based on the value of the target address field not match-
ing the millicode routine address, continue searching
the BTB.

20. The computer millicode control coded program accord-
ing to claim 19, wherein millicode can not control a program
of'the multiple user programs outside of the millicode routine
and said branch addressing mechanism prevents mcends not
associated with the millicode routine from yielding a fetch to
outside of a current millicode routine while performing such
operations as required by said millicode routine.
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